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Abstract- Causal graphs are the most suitable representation of causal relationships between variables in a complex 
system. Directed acyclic graphs (DAGs), also known as Bayesian networks, are the well known and frequently used to 
represent these causal relationships. Learning the structure of causal DAGs from data is very important in applications to 
various fields, such as medicine, artificial intelligence and bioinformatics. Recently L1-regularization technique has been 
used for learning causal DAGs model structure. In this paper we propose an improved version of Grow-Shrink algorithm 
(GS), presented by Margaritis 2000, where we used L1 variable selection for Markov blanket selection step. Then we 
compare the performance of the proposed method with the state of the art ones: PC (Peter & Clark), and GS algorithms. 
Finally, we discuss and analyze the results.    
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I.  INTRODUCTION 
 
Bayesian networks (DAGs) are the most convenient graph for representing causal relationships; because they are directional 
thus are capable of displaying relationships clearly and intuitively. A  DAG consists of a set of nodes N where each node i  
represents a variable Xi  receives directed edges from its set of parent nodes Pi so They can be used to represent both direct 
and indirect causation and handle uncertainty though the established theory of probability [1].  
 
The last decade witnessed great interest in learning causal Bayesian networks from observational data because it can be used 
to automatically construct Decision Support Systems. In addition learning Bayesian networks have been used in several 
applications, for example, in bioinformatics for the interpretation and discovery of gene regulatory pathways, variable 
selection for classification, designing algorithms that optimally solve the problem under certain conditions, information 
retrieval and natural language processing [3]. 
 
The algorithms for learning causal Bayesian networks can be classified into three main types. The first, constraint-based 
algorithms use tests to detect relationships among variables for example SGS and PC algorithms [7]. The second, score-based 
algorithms select the structure that has the highest score of a function that measures how well the structure fits the data for 
example the GES algorithm [8]. The third is hybrid algorithms that utilize both score-based and constraint-based methods to 
construct the graph for example MMHC (Max-Min hill climbing) [12]. 
 
L1 regularization has been used first to learn the structure in probabilistic undirected graphical models. However, it is more 
preferable to use it in learning directed acyclic graphs (DAGs); because DAGs are more efficient for computing joint 
probabilities, samples, and (approximate) marginal's, the likelihood in DAG models factorizes into a product of single 
variable conditional distributions in contrast to directed acyclic graphs where estimating single-variable conditional 
distributions is used as an approximation and DAGs allow mixing different types of variables in a straightforward way. 
 
Some algorithms like GS [2] and CS (Collider Set) [4] use Markov blanket approach to improve scalability by using 
information obtained from feature selection algorithms. GS algorithm refers to the first class (constraint-based methods) 
addresses the disadvantages of this category, exponential execution times and proneness to errors in dependence tests used, by 
identifying the Markov blanket of each variable in the Bayesian net as a preprocessing step. This preprocessing step handles 
the exponential time to be polynomial under the assumption of bounded Markov blanket size. 
 
In this paper we use L1 regularization technique for feature selection [5] in the preprocessing step to improve the existing GS 
algorithm, because adding regularization to a learning algorithm avoids over fitting. L1 norm is advantageous because it 
encourages the sparse solutions which in order reduce the computational requirements.  
 
A background and the problem statement are shown in section 2. Then the GS algorithm is discussed in section 3. After that 
the proposed algorithm L1GS is described in section 4. The experimental results of applying L1GS, GS and Pc algorithms to a 
set of observational datasets and a comparison between them is shown in section 5. Finally, section 6 provides the conclusion 
and hints to future work.  
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II. BACKGROUND AND PROBLEM STATEMENT 
 
Relatively recently (1980’s), the idea of inferring causal relations from observational data took place in many practical cases 
[10, 11]. Since then, several algorithms have been developed to infer such causal relations which greatly reduce the number of 
experiments required to discover the causal structure. In general learning the causal structure [6, 7] is a multivariate data 
analysis problem that aims at constructing a directed acyclic graph (DAG) presents the direct causal relationships among the 
interesting variables of a given system. 
 
The last decade witnessed more interest in local learning. Markov blanket learning methods were first proposed by Koller & 
Sahami (1996) and Cooper (1997) introduced incomplete local causal methods. The local causal discovery methods (direct 
cause and effect) were first introduced by Aliferis & Tsamardinos, 2002a and Tsamardinos et al., 2003b [13]. 
 
Using Markov blanket (Mb) definition , Mb(X) is a minimal variable subset conditioned on which all other measured variables 
are probabilistically independent of X,  in causal structure learning achieves promising results, since it was first proposed by 
Margaritis (2000) [1]. This approach is quite efficient since it extracts the Markov blanket information for each variable 
X V from observational data, V is a set of variables, and then constructs a DAG graph from it. Another attempt for using 
this technique was proposed by Pellet& Elisseeff (2008) [9]. 
 
The Markov blanket for each variable X V is the smallest set containing all variables carrying information about X that 
cannot be obtained from any other variable, in a causal graph this is the set of all parents, children, and spouses of X, fig. (1) 
Presents an example of Mb(X). Formally, in the context of a faithful causal graph G we have: 

( ) ( )X Mb Y Y Mb X   . An important property of Markov blanket is that Mb(X) is unique in a faithful BN or a CPN. 
 
 

 
 
     
 
As mentioned before DAG models are one of the best ways to model the joint distribution P(X1, X2, …, Xn) of a set of n 
random variables. If we repeatedly use the definition of conditional probability, P(X, Y) = P(Y | X) P(X), in the order n down 
to 1, then we obtain the factorization of the joint distribution: 
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This factorization of the joint distribution is valid for any probability distribution.     
    The main goal of this paper is to use the Markov blanket approach to learn the structure of DAG that encodes causal 
relationships among a set of interesting variables V from observational data D. We propose an improved version of GS 
algorithm where we use L1regularization for feature selection to select the Markov blanket for each interesting variable in a 
preprocessing step before starting the causal structure learning phase. We call the proposed algorithm as L1GS. 
 

III. GROW-SHRINK ALGORITHM (GS) 
 
    It is the first published sound Markov blanket induction algorithm that was proposed by Margirits & Thrun [2]. It was 
introduced with the intent to induce the Markov blanket for the purpose of speeding up global network learning. The whole 
algorithm can be split into two phases; the first: finds the Markov blanket for each variable which greatly facilitate the 
recovery of the local structure around each node, the second: performs further conditional-independence tests around each 
variable to infer the structure locally and uses a heuristics to remove cycles possibly introduced by previous steps. Table (1) 
lists the steps of the GS responsible for building the local structure using the Markov blanket information, DN(X) represents 
the direct neighbors to X. the complexity of step 1 for exploring Markov blanket is O (n) in the number of independence tests.  

Fig. 1  An example of Markov blanket of variable X 
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    The GS algorithm passes each variable and its Markov blanket members twice. In the first pass it removes the possible 
spouse links between linked variables X and Y by looking for a d-separating set around X and Y (set Z d-separates X and Y if 
every path from X to Y is blocked by Z). In the second pass, the GS orients the arcs whenever it finds that conditioning on a 
middle node creates a dependency. While searching for the appropriate conditioning set, GS selects the smallest base search 
set (set B in table 1) for each phase. The search for the smallest set B has two advantages. The first, it reduces the number of 
tests, which is desirable because each phase contains a subset search, exponential in time complexity with respect to the 
searched set. The second advantage is reducing the average size of the conditioning set, which increases the power of the 
statistical tests, and thus helps reduce the number of type II errors [9]. 
    It is obvious from table (1) that the whole algorithm requires O (n2 + nb22b) conditional independence tests, where b=maxx 
(|B(X)|). If we assume that b is bounded with a constant then the algorithm is O (n2) in the number of conditional 
independence tests.  
    The main core and advantage in GS algorithm is using a Markov blanket technique before starting the structure learning; 
because it restricts the size of the conditioning sets. We concentrate on this step to improve the GS performance and choose 
another Markov blanket algorithm L1MB; it will be shown in details in the next section.  
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                          TABLE I 
PLAIN STEPS FOR GS ALGORITHM 
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IV. THE PROPOSED ALGORITHM L1GS 
 
    Using L1 regularization for learning DAGs model structure has been studied before by Li & Yang (2004, 2005), Huang et 
al. (2006) and Levina et al. (2008). In this paper we use L1 regularization for variable selection to explore the Markov blanket 
for each variable.  
    we propose  an improved version of GS algorithm where we used L1MB algorithm[5] , introduced by Mark Schmidt 
(2007), in the first step in table (1) to compute the Markov blanket for each variable X V . We show that using regression 
to find the Markov blanket results in much lower false negative rates and it is also more statistically efficient because it does 
not need to perform conditional independency tests on exponentially large conditioning sets. Table (2) shows the steps of 
L1MB algorithm. 
    The problem of choosing the Markov blanket for a node X from a set V can be formulated as solving the following: 

   1
1

ˆ | arg min , ,L
j V nill X V


      , where  is the scale of the penalty on the L1 norm of the parameter vector, 

excluding 0 , the simplest way for choosing   is to use cross validation approach. Hence L1MB technique depends on 
regressing each node Xj on all others (V = x−j), using L1 variable selection. This process takes O (nd3) time per node, and 
(ideally) finds a set that is as small as possible, but that contains all of X’s parents, children and co-parents (its Markov 
blanket) 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

TABLE II 
L1MB ALGORITHM 
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V. EXPERIMENTAL RESULTS 

 
In order to test the effectiveness of the proposed algorithm L1GS and compare the results with the original GS and the state of 
the art PC algorithms; we performed a series of experiments on different samples of well known datasets from the Bayes net 
repository [14], table (3) shows some statistical information about these datasets. We used BNT Matlab toolbox [15] to 
implement PC and we use Mark Schmidt implementation for L1MB [5] for the proposed algorithm L1GS and the GS 
algorithm also implemented in Matlab. The statistical tests were done using chi-square X2 test, for PC and GS; we chose the 
default value of  = 0.05. 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
   
 
                          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
 
 
 
 
 

Name No. 
Nodes 

No. 
edges 

Max 
Parents 

Fig. 

Alarm 37 46 3 2 

Insurance 27 52 3 3 

Hailfinder 56 66 4 4 

Carpo 61 74 5 5 

                           TABLE III 
 DATASETS FROM BAYES NET REPOSITORY 

Fig. 2  Alarm Network 

Fig. 3  Insurance Network 

Fig. 4  Hailfinder Network 

Fig. 5  Carpo Network 
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In this series of experiments, we compared the proposed algorithm L1GS to the original GS, where the graph being built is 
initialized with the Markov blanket information about each variable. However, PC algorithm is modified to start with the 
moral graph (instead of the full graph in the original version of PC). We tested the three algorithms on each network using 
chi-square X2 test of the sample partial correlation coefficient  as computed on artificial data, with significance α = 0.05. Table 
(4) shows the results of these experiments.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results for the modified PC algorithm are only shown for the comparison purposes; it is a general purpose algorithm 
which is not specialized in local structure learning using Markov blankets. From the comparison we note that, whenever the 
Markov blanket information is available or cheap to obtain, there are more efficient algorithms than the states of the art. 
 
From the results in table (4), L1GS outperforms the others in nearly all the experiments or at least have the same results. L1GS 
and the original GS are close to one another in all scores, and outperform PC  in the number of tests and in average and 
maximum size of the conditioning sets because they uses the Markov blanket information.  However, our approach is a bit 
better than the others in terms of number of tests, while still using smaller average and maximum conditioning set sizes in all 
tested networks. 
 

VI. CONCLUSION AND FUTURE WORK 
 

    The Markov blanket approaches enable constrained-based learning methods to learn the local causal structure of DAGs. It 
improves the algorithms’ scalability by limiting the sizes of conditioning sets to Markov blankets. Hence, given restricted 
Markov blanket information with a theoretically correct conditional independence testing and firmest search procedure, the 
learning algorithm will guarantee the best DAGs structure.  
 
Finally, Causal discovery and feature selection are strongly linked, since optimal feature selection discovers Markov blanket 
as sets of strongly relevant features, and causal discovery discovers Markov blankets as direct causes, direct effects and 
common causes of direct effects. The undirected moral graph (approximation of the causal graph) can be obtained by 
performing perfect feature selection on each variable. Then an extra step, computing the graph structure, is needed in order to 
transform the Markov blankets into parents, children and spouses. This step is exponential in the worst case, but is actually 
efficient provided the graph is sparse enough; this sparsity is achieved when using L1 variable selection and this is what we 
implement in this paper.   

 
L1GS GS Pc 

Alarm  
1462 
2.21 
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1485 
2.61 
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11335 
4.32 
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Average 
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Insurance 
6379 
 
3.55 
 
10 

6435 
 
3.62 
 
11 

773567 
 
7.64 
 
15 

Tests 

Average 

Maximum 

Hailfinder  
2776 
 
2.43 
 
6 

 
2809 
 
2.66 
 
5 

 
11345 
 
5.77 
 
7 

Tests 

Average 

Maximum 

Carpo  
200618 
 
7.36 
 
8 

 
209342 
 
7.45 
 
8 

 
202525 
 
5.44 
 
6 

Tests 

Average 

Maximum 

TABLE IV 
NUMBER OF TESTS AND SIZE OF THE CONDITIONING SETS AS PERFORMED BY VARIOUS ALGORITHMS 

Algorithm 
Network 
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    The future challenges may be with learning causal structure including robust and consistent distribution-free structure 
learning with continuous and potentially highly nonlinear data. And we are looking forward to extend L1GS technique to 
handle multi-state discrete variables as well as modeling parent interactions and nonlinear effects. 
 
    An apparent weakness of the two-stage approaches is that if a true parent is missed in Stage 1, it will never be recovered in 
Stage 2. Another weakness of the existing algorithms is computational efficiency, i.e., it may take hours or days to learn a 
large-scale BN such as one with 500 nodes. 
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